A new series of organic salts with selective near-infrared (NIR) harvesting to 950 nm is reported, and anion selection and blending is demonstrated to allow for fine tuning of the open-circuit voltage. Extending photoresponse deeper into the NIR is a significant challenge facing small molecule organic photovoltaics, and recent demonstrations have been limited by open-circuit voltages much lower than the theoretical and practical limits. This work presents molecular design strategies that enable facile tuning of energy level alignment and open-circuit voltages in organic salt-based photovoltaics. Anions are also shown to have a strong influence on exciton diffusion length. These insights provide a clear route toward achieving high efficiency transparent and panchromatic photovoltaics, and open up design opportunities to rapidly tailor molecules for new donor–acceptor systems.